Network Routing
Algorithms, Protocols, and Architectures


(Publisher: Morgan Kaufmann Publishers, an imprint of Elsevier)


Gutting the Book Table of Contents/
Sample Chapters
Sample Course
Support Material for Instructors and Students
Reviews References Useful Routing-Related Resources About the Authors

Publication Date: March 30, 2007! | | | |


Elsevier-Asia Pacific regional Sales offices, contact info



Larry Landweber
Past John P. Morgridge Chair and Past Department Chairman
Computer Science Department, University of Wisconsin–Madison
Fellow, Association for Computing Machinery
Recipient of IEEE Award on International Communication
Former President and Chair of the Board of Trustees, Internet Society

My involvement with computer networking started with TheoryNet (1977), an e-mail system for theoretical computer scientists. Later (1981) I helped lead the computer science network (CSNET) project, which eventually connected most academic and many industrial computer research groups. In the early days, our efforts were primarily focused on providing connectivity and being able to use applications such as e-mail, ftp, and telnet. However, even in the simple (by today’s standards) environment of the 1970s and early 1980s (Arpanet, CSNET, and other experimental Internet networks), getting routing “right” turned out to be quite challenging.

I was fortunate to be part of the NSFNET regional/backbone model development. This is when I began to fully understand the significance of routing in a large-scale multi-domain network and, in particular, the central role of policy issues in such a decentralized environment. Over the past decade, as the Internet became ubiquitous and global in scale, routing has become ever more important. Packets must be forwarded efficiently from one end of the world to the other with minimal perception of delay. This has required tremendous efforts on many fronts: how to evolve routing protocols for large-scale loosely-coupled networking environments, how to engineer a network for efficient routing from an operational point of view, how to do efficient packet processing at routers, and how to effectively take into account the complexity of policy issues in the determination of routes. And while there have been many exciting advances over the past two decades, much work remains to be done.

In parallel, we have seen tremendous advances in traditional telephony. The underlying telecommunication system has changed from analog to digital and has incorporated the latest advances in optical technologies and, more recently, voice over IP. Throughout these revolutionary changes, routing has continued to play a critical role.

We are now at a crossroad. Various efforts are underway to determine a framework for next generation networks that allow seamless convergence of services and a platform tomore easily create new services. Among other things, this requires a fresh look at routing. To be successful, it is important that we understand what has worked to date. To better understand the issues and complexities, we should look at this broadly, considering a variety of different network architectures, not just for the Internet. For each such network architecture, we can benefit from understanding its principles, protocols, algorithms, and functions, with a focus on routing. This will help give us perspective as we consider how to design routing for the next-generation network.

In this regard, Deepankar Medhi and Karthikeyan Ramasamy’s book, Network Routing: Algorithms, Protocols, and Architectures, is very timely. Departing from most other works, it is unique in providing an in-depth understanding of routing in a wide variety of types of networks. It includes extensive coverage of the evolution of routing over time. Particularly appealing is its in-depth coverage across a spectrum of algorithmic, technical, experiential, and practical issues. In addition, the detailed coverage of routers and switches is particularly valuable, as it helps the reader gain an understanding of why different approaches and components are needed to address packet processing, especially for scalability. In this regard, it is uniquely successful in drawing an important connection between routing and routers.

Medhi and Ramasamy’s presentation is clear and approachable, allowing a wide audience to understand and gain an appreciation of network routing. I believe that it will become a core reference book on routing for router developers, network providers, students, and researchers for both today’s practitioners and those who are interested in next-generation routing.